STRLCTLRE OF AND BONDING IN $1,5-C Y C L O O C T A D I E N E-D L R O Q U I N O N E-$ NICKELa

MLTOK D. GLICK
 (Received August 3rd, 196́)

NTRODUCTION

Schrauzer and Thyret ${ }^{1 \rightarrow}$ have recently stnthesized and characterized from spectral and magnetic measurements bis-duroquinone-nickel, and a number of derivatives in which one duroquinone is replaced by various diolefinic groups. On the basis of the ultraviolet spectra of these complexes, Schrauzer and Thyret concluded that the symmetry of bis-duroquinone-nicke! (o) is D_{3}, and therefore that the nictel is square planar (iec., the two sets of double bonds are parallel) in the complex. Although no direct predictions of the configurations of 1,5 -cyclonctadiene-duroquinone-nickel or other mono-duroquinone-nickel complexes were made ${ }^{1-4}$, it is expected that these closely related compounds should posiess a similar conformation. Our subecquent single crystal X-ray investigation of the 1.5 -cyclonctadiene-duro-quinone-nickel complex, hence. was undertaken to confirm or disprove the existence of a square planar "zerotalent" nickel in these complexes and to obtain detailed information about the deformation of the ligands due to their interaction with the niciel. Of further interest is that no L-ray analysis of a metal complexed with duroquinone has been reported.

EXPERIJENTAL

Crystals of esclooctadiene-duroquinone-niche! ($\mathrm{NiC}_{13} \mathrm{H}_{24} \mathrm{O}_{2}$) were generously supplieg to us by Dr. Schraczer. The density was obtained by the flotation method. A deep-red, needle like crystal of dimensions $0.05 \mathrm{~cm} \therefore 0.03 \mathrm{~cm} \therefore 0.03 \mathrm{~cm}$ was chosen for obtaining intensity data and aligned with the 0.05 cm needle axis as the rotation axis.

Sisteen layers of multiple-film equi-inclination Weisenberg data (hko to hki5), containing 1757 indepandent difiraction maxima, were obtained with Mo- H_{x} radiation. After Lorentz-polarization and spot extension corrections ${ }^{-}$. these data were correlated and merged via least squares with 750 lorentz-polarization corrected diffraction

[^0]maxima obtained from multiple-exposure precession photosraphs of reciprocal layers $h o l, h y l, l_{22} l$, and $o k l$. A final total of 1880 independent structure amplitudes were placed on a common scale with a weighted reliability index of 4.2%. Lattice constants were determined from precession photographs. The Weissenberg and precession intensity data were visually estimated by comparison with calibrated standard strips. Absorption corrections were neglected due to the low absorption coefficient ($\mu R_{\max }=$ $0.2)$. The standard deviations of the structure amplitudes [i.e., $F_{0} i^{2} \sim I\left(h k l_{0}{ }_{0}\right.$ were estimated according to the following scheme:
If $I(h k l)_{0}<\sqrt{10} I(h k l)_{\min }$, then $\sigma\left(F_{0}\right)=F_{0} \quad I(h k l)_{\min } / \sqrt{2} I\left(h k l_{0}{ }^{2}\right.$. If $I(h \mathrm{kl})_{0} \geq \sqrt{\mathrm{IO}} I(h \mathrm{kl})_{\mathrm{min}}$. then $\sigma\left(F_{0}\right)=F_{0} / / / 20$.

CRYSTAL DATA

The unit cell is monoclinic with $a=\mathrm{I}_{4} .26 \pm 0.05 \AA, b=7.95 \pm 0.03 \AA, c=$ $14.17 \doteq 0.05 A$, and $\beta=94^{\circ} 27^{\prime} \doteq 10^{\prime}$. The experimental density of $1.44 \mathrm{~g} / \mathrm{cc}$ is in acceptable agreement with the value of $1.37 \mathrm{~g} / \mathrm{cc}$ calculated for four molecules per unit cell.

The systematic absence of $h \div l=2 n \div 1$ for hol data indicates the probable space groups P_{n} and P_{2} / n. The structural determination showed the correct space group to be P_{2} / n. The four molecules were found to be on two-fold axes with the four nickel atoms thereby in the two sets of special two-fold positions: $\pm(1 / 4, y, 1 / 4)$ and $\therefore(3 / 4, y, 1 / 4)$. All carbon atoms are in the general four-fold set of positions: $\pm(x, y, z$; $I / 2-x, y, I / 2-z)$. The asymmetric unit, hence, comprises two half-molecules.

In addition to the $C_{2 h}-2 / m$ Laue symmetry required in the monoclinic system, the S-ray photosraphs also revealed two quasi-mirror planes normal to the a and c crystallographic axes, which were explained by the final structure.

SOLETION OF STRECTCRE

The solution of a calculated three-dimensional Patterson synthesis resulted in the placing of two nickel atoms not related by crystallographic symmetry at the fractional coordinates, $x_{1}=0.75, y_{1}=0.29, z_{1}=0.25$ and $x_{2}=0.25, y_{2}=0.059$, $z=0.25$. The two independent nickel positions with an x separation of 0.5 and the same z coordinate require that either the actual space group is P_{n} and the asymmetric unit consists of two molecules, or the correct space group is P_{2} / n and both nickel atoms are located on 2 -fold axes. If the latter is true, it is necessary to determine atomic positions corresponding io two half-molecules. Since a Fourier map based upon only the phases of heary atoms will possess the symmetry of the heavy atoms in the unit cell regardless of the true symmetry, this first approximation to the electron density distribution may have a number of extra "image" peaks if $P n$ is the true space group. A three-dimensional Fourier synthesis phased only on the nickel atoms was computed, and no extra peaks were observed. Examination of the map yielded the 22 non-hydrogen peaks required for the two half-molecules. The peaks corresponding to the two asymmetric oxygen atoms were readily distinguished on the basis of peak heights, chemical conformation, and distances between peaks.

A three-dimensional isotropic least-squares refinement based on the spacegroup P_{2} / n resulted in discrepancy factors of $R_{1}=\sum F_{0}-F_{\mathrm{c}} / \sum F_{0} \times 100=$
 to ascertain the possible presence of systematic error in the merging of the intensity data, two cycles of least-squares refinement with separate scale factors for each Weissenberg and precession laver were carried out on the parameters obtained from this refinement; no significant parameter changes were obtained.

A \mathfrak{c}.-as-dimensional difference map, in which the atomic contributions of all atoms in the positions obtained from the isotropic least-squares refinement were subtracted out, showed no areas of residual electron density except for that in the incinity of the nickel atoms, which was attributed to anisotropy of the heavy atoms. In order to compensate for this effect with a minimum use of computer time, we have modified the Busing-Martin-Levy full matrix least-squares program' such that anisotropic refinement of an arbitrary number of atoms and isotropic refinement of the remaining atoms can be carried out simultaneousli. The utilization of such a refinement with anisotropic thermal cocfficients for the two nickel atoms and isotropic temperature factors for the eighteen carbon and two oxygen atoms yielded final discrepancy factors of $R_{1}=10.1 \%$ and $R_{2}=12.7 \%$. A final difference map based on this refinement showed no significant residual electron density. Since no peaks characteristic of hydrogen atoms ware clearly resolved in the regions where they might be expected, no further attempt was made to locate their coordinates.

Positions and thermal parameters obtained from the final anisotropic-isotropic retinement are given in Table r. The structure factors calculated from these parameters are listed with observed structure factors (with phases based on those of the calculated siructure factors) in Table 2 . Bond lengths and angles, calculated with the Busing-Martin-Lexy ORFFE program with errors obtained from the full inverse matrix, are listed in Tables 3 and $\&$. The Fourier maps were calculated on the CDC $160+$ with a program writen by J. Bioust of this iaboratore.

The Smith least-:quare: plane program ${ }^{11}$ was urilized to obtain the equation: of "best" planes formed bs seceral sets of atoms and the perpendicular distances of these and other atoms from the planes. Unit weighting was used in the calculation of ihese pianes. The equation of the least-squares plane is expresed in orthogonal coordinates K, Y^{\prime}, and 2 , which are reiated to the monoclinic cell coordinates for each

DEECRIPTION AND HSCTESION OE STRUCRERE
Cyclooctadiene-duroquinone-nickel exists in the solid state as discrete monorneric molecules with each molecule (Fig. I) consisting of a nickel atom sandwiched between a boat-form $\mathrm{f}, 5$-crelooctadiene ring and a duroquinone ring (i.e., tetra-methyl-p-benzequinonel. Since the asymmetric unit contains iwo half-molecules (packed in the manner indicated in Fis. 2), two independent values of each intramolecular bond length and angle are obtained. Significant distortions (eide infra) of the cyelooctadiene ring which are common to each of the independent half-molecules permit the pairing of the chemically equivalent parameters. The atoms are numbered such that $\mathrm{C}(\underline{n})$ and $\mathrm{C}(2-10)$ are equitalent atoms (e.g., bond lengths $\mathrm{C}(\mathrm{I})-\mathrm{C}(\underline{2})$ and $\mathrm{C}_{(1 \mathrm{I})}-\mathrm{C}(\mathrm{I} 2)$ are presumed chemically equivalent); $\mathrm{C}(\mathrm{r})$ through $\mathrm{C}(9), \mathrm{O}(\mathrm{I} 0)$, and $\mathrm{Ni}(\mathrm{I})$ belong to the first half-molecule and the remaining atoms to the second half-molecule. Of the 29 resulting pairs of common bond lengths and angles in the two half-molecules,
J. Organomeial. Chem.. 3 (1965) 200-モ․ 1

TABLE I
final atomic parameters with standard deviations

-ftom	x	v	$=$	$B\left(I^{2}\right)$	${ }^{104} \sigma_{x}$	${ }_{10}{ }^{2} \sigma_{y}$	$\mathrm{IO}^{3} \sigma_{z}$	$\sigma_{B}\left(A^{2}\right)$
Ni(t)	0.2500	$0.059+$	0.2500	**	0 -	2	0 *	
Vi(2)	0.7500	0.2911	0.2500	*	0^{*}	2	0 *	
C(1)	0.1312	$0.3+37$	0.1876	$5 . S_{4}$	11	24	12	0.34
C(2)	0.1993	0.2275	$0.14{ }^{1}$	4.28	8	20	10	0.27
C(3)	$0.292 S$	0.2350	0.1495	3.76	9	19	9	0.24
C(4)	0.3480	0.3715	0.2036	6.58	12	26	13	0.41
C(5)	0.0631	-0.1495	0.1358	+.35	9	19	9	0.27
C(6)	0.1591	-0.1544	0.1953	2.51	7	15	7	0.19
C(7)	0.2459	-0.166+	0.147°	2.39	7	14	7	0.18
$\mathrm{C}(\mathrm{S})$	0.335 S	-0.1527	0.20, 8	2.59	7	15	7	0.20
C(9)	0.4247	-0.1461	$0.15=2$	4.17	8	19	9	0.26
$\mathrm{O}(10)$	0. $2+32$	-0.1789	0.0603	$\pm .33$	6	13	6	0.19
Cili)	0.6757	0.0052	0.1345	5.52	II	23	11	0.33
$C(12)$	0.6434	0.1236	0.2076	3.91	9	15	9	0.26
C(13)	0.6547	0.1160	0.3013	+25	9	19	10	0.28
C(it)	0.-133	-0.0-So	$0.3+58$	6.31	12	25	12	0.40
$\mathrm{C}(15)$	0.637^{3}	0.5012	0.0663	4.39	9	20	9	0.27
Cifi)	0.697-	0.5068	0.1612	2.50	7	15	7	0.19
Ciry	0.6 .457	0.5192	0.3465	-31	7	13	7	0.18
Cls)	0.7052	0.5069	0.3350	2.67	7	16	7	0.19
Cio	0.6515	$0.50 \geq 9$	0.4255	+14	8	19	9	0.25
O(20)	0.5615	0. 5335	0. 2430	4.02	6	12	6	0.18

[^1]the largest difference in a given pair is only 1.7σ 's with 21 differences less than 1σ.
These results confirm the equivalence of the two half-molecules and support the estimates of the standard deviations. This discussion henceforth will use only the atomic designations of the first molecule and will in all cases refer to the average value of the molecular parameters for the two half-molecules with the standard deviation of the average given by the usual statistical formula for independent parameters.

The two sets of parallel double bonds in the cyclooctadiene and duroquinone rings are perpendicular so that, if we assume the nickel to be bonded to the four approsimately equidistant double bond centers, the nickel is in an idealized tetrahedral configuration. The dihedral angle between the plane containing the nickel and the duroquinone olefinic midpoints and the plane comprising the nickel and the cyclooctadiene oleninic midpoints is essentially 90°. It should be noted that the assumed tetrahedral "zerovalent" nickel in this complex is isoelectronic with the tetrahedral nickel(o) in $\mathrm{Ni}(\mathrm{CO})_{4}{ }^{12}$. Of course, the nichel can be formally considered as forming covalent sigma bonds to each of the eight olefinic carbons, but this resulting eight-fold

=

- 請

-
-

-

\qquad

-

的

=

$=$

\qquad

=

天
J. Organometai. Chem., 3 (1965) 200-221

\qquadnnnannnannnnannannanannannnnnnnnnnnnnnnnnnnnn-nnnnnnnnnnnmmananna

$$
\begin{aligned}
& \% ~ 000000000000000000000 \text { 世0000000000000000000000c000000000<000}
\end{aligned}
$$

[^2]| | | |
| :---: | :---: | :---: |
| 0以nOOOO－
 － |

 |
 |
| | | |
| $0=0-2000$ | ㄷㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ응 | コニゴッコニゴゴコニコニコココニゴゴコ |
| | | |

\qquad

以ニx

 シำำ\qquad

TABRE 3
intramolectlaz distances (A) With standard deviations
For each chemically distinct distance the two independent values corresponding to the two halfmolecules and the average value are given.

Draroquinone

$C=C$ bmds

$\begin{aligned} & C\left\{(\sigma)-C\left(S^{I}\right)\right. \\ & C(16\}-C\left(S^{I I}\right) \end{aligned}$	$\begin{aligned} & 1.113=0.015 \\ & 1.3 S 9=0.014 \end{aligned}$	$\mathrm{P} .40 \mathrm{OL} \dot{0.010}$
C-C bonds		
$\mathrm{C}_{(7)}$) - $\mathrm{C}(3)$	1.470 $\ddagger 0.014$	
C(17)-C(1S)	1.437 ± 0.015	$1.454 \pm 0.0: 0$
$\mathrm{C}(6)-\mathrm{C}(7)$	1.462 ± 0.015	$1.454 \div 0.010$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1 .+45 \pm 0.015$	1.434 $=0.010$
$\mathrm{CH}_{3}-\mathrm{C}$ bonds		
C(5) - $\mathrm{C}(\mathrm{0})$	1.492 ± 0.017	
C(15)-C(10)	1.327 ± 0.017	$1.510=0.012$
$C(9)-C(5)$	$1.5 \geq 1=0.016$	
C(19)-C(18)	1.54% - 0.0100	$1.533=0.015$
$C=O$ oonds		
$\mathrm{C}(-)-\mathrm{O}(\mathrm{ro})$	$1.231=0.013$	$1.237=0.009$
$\mathrm{C}(\underline{1} 7)-\mathrm{O}=0)$	1.マsマ	1.23. $=0.009$

Ner:-bonding ring distances

C(6) ...Cicij	2.916 $=0.022$	
$\mathrm{C}(15) \ldots \mathrm{C}\left(15^{15}\right)$	$2.831=0.021$	$=0.010$
$\mathrm{C}\left(\mathrm{Sl}\right.$... $\mathrm{C}\left(5^{5}\right)$	$2.345=0.022$	2
C(IS)...C(IS ${ }^{\text {IT }}$]	$2.555=0.02 .2$	2 $=0.0 \%$
C(o) ...C(S)	-512	$2.455-0.012$
$\mathrm{C}(16) \ldots \mathrm{C}(18)$	$2.95=0.01$	$2+55=0.012$

Non-bonciong $H_{3} C \ldots C H_{2}$ ditiantace
$\begin{array}{ll}\mathrm{C}\left(5 ; \ldots \mathrm{C}\left(9^{\mathrm{I}}\right)\right. & 2.999=0.021 \\ \mathrm{C}(\mathrm{Ej}) \ldots \mathrm{C}\left(19^{\mathrm{II}}\right) & 2.999=0.020\end{array}$
Son-čonairg $H_{3} C \ldots O$ äiséances

$C(5) \ldots O(10)$	$2 . S 01=0.01 S$	$2.505=0.013$
$C(15) \ldots O(20)$	$2.309=0.01 S$	
$C(9) \ldots O(10)$	$2.51 S \pm 0.015$	2.312 ± 0.011
$C(19) \ldots O(20)$	$2.300=0.017$	

1.5-Cyclooctadiente

$C=C$ cosids		
C(2) - ($^{(3)}$	1.323 ± 0.015	
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.320=0.015$	$1.375=0.013$

C-C EOnds adjacen: to otefnic bond

$C(1)-C(2)$	$1.510=0.021$	$1.510=0.015$
$C(11)-C(12)$	$1.510=0.021$	
$C(3)-C(4)$	$1.514=0.023$	$5.525=0.016$
$C(13)-C(14)$	$1.511=0.023$	

C-C benas nen-adjacent to olejorir óend
$\begin{array}{lll}C(I)-C\left(4^{I} j\right. & 1.563 \div 0.023 & 1.570 \doteq 0.016 \\ C(I I)-C\left(14^{I I}\right) & 1.576 \div 0.022\end{array}$

TABLE 3 (continued)

Non-bondirg ring distances		
$\mathrm{C}(2) \ldots \mathrm{C}_{(31)}$	2.9	
$\mathrm{C}(12) \ldots \mathrm{C}\left(13^{11}\right)$	2.996 ± 0.023	2.908 ± 0.017
$\mathrm{C}(2) \ldots \mathrm{C}(21)$	3.229 ± 0.033	
$\mathrm{C}(12) \ldots \mathrm{C}(12 \mathrm{II})$	$3 \mathrm{ISI} \equiv 0.031$	$3.205=0.023$
$\mathrm{C}_{(3)} \ldots \mathrm{C}\left(3^{1}\right)$	$3.15 \mathrm{~S}_{3} \mp 0.032$	$5 \bigcirc 0.023$
$\mathrm{C}(13) \ldots \mathrm{C}\left(13^{\text {II }}\right.$)	$3.15{ }^{2}=0.034$	$5=0.023$
$\mathrm{C}_{(1)} \ldots \mathrm{C}(4)$	$3.066 \doteq 0.023$	
$\mathrm{C}(\mathrm{II}) \ldots \mathrm{C}(1+1)$	3.048 ± 0.029	$3.057=$
$\mathrm{C}(1) \ldots \mathrm{C}\left(\mathrm{I}^{1}\right)$	3.663 ± 0.037	
$\mathrm{C}(\mathrm{H}) \ldots \mathrm{C}\left(\mathrm{IH}^{\mathrm{H}}\right.$)	3.735 ± 0.037	$3.699=0.026$
${ }_{C}^{C(4)} \ldots \mathrm{C}\left(4^{\text {I }}\right.$)	$3.166 \doteq 0.041$	$3 \mathrm{II} 4 \doteq 0.029$

Ditroquinome-nickel

Vi(1)-C(S)	$2.207-0.012$	2.213 -0.010
Ni(2)-C(xS)	2.219 ± 0.013	$2.213=0.010$
Si(1)-C(6)	$2.2 .80 \pm 0.012$	$2.232-0.010$
$\mathrm{Ni}(2)-\mathrm{C}(16)$	$2.224 \div 0.012$	-23- $=0.010$
$\operatorname{Si}(1)-\mathrm{C}(7)$	$2.311 \div 0.012$	$2.314 \div 0.008$
$\left.\mathrm{Ni}(2)-\mathrm{C}(1)^{\prime}\right)$	$2.317=0.010$	$2.314=0.005$
Mi(1)-\1(1)	2.103	2.109
Ni(2)-M(${ }^{\text {(2) }}$	2.109	2.109

Cycloctadiense-nickel

Si(1)-C(3)	2.114 ± 0.015	-114 :-
$\mathrm{Ni}(2)-\mathrm{C}(13)$	$2.113=0.015$	$2.114-0$
Ni(1)-C(z)	$2.096=0.055$	2.056 -0.010
Ni(2)-C(12)	$2.075=0.014$	2.056
Ni(i)-S(1)	\%.993	1.092
Si(2)-S(2)	1.985	1.992

The midpoints of the olefinic bords are designated as follows:
$\begin{array}{ll}M(1): C(3)-C\left(6^{1}\right) & N(1): C(2)-C(3) \\ M(2): C(1 S)-C\left(16^{I 1}\right) & N(2): C(12)-C(13)\end{array}$
Superscript 1 refers to the position ($1 / 2-x, \bar{y}$, il2--).

 and angles.

TABLE 4
mintamolecclar angles (Degrees) with standard deviations
For each chemically distinct angle the two independent values corresponding to the two halfmolecules and the average value are given".

Duroquinone

$C(6)-C(7)-C(S)$	127.9 $=0.9^{*}$	117.5 $=0.6=$
C(:6)-C(1-)-C(1S)	$117.0=0.9$	$11.75=0.6$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}\left(6^{1}\right)$	$122.2=0.9{ }^{2}$	122.0 -0.6 *
$\mathrm{C}(17)-\mathrm{C}(5 \mathrm{~S})-\mathrm{C}\left(16^{11}\right)$	$121.7=0.9^{3}$	12-2 0.6
$\mathrm{C}\left(\mathrm{Sj}-\mathrm{C}\left(\mathrm{G}^{1}\right)-\mathrm{C}\left(\bar{r}^{1}\right)\right.$	${ }_{129.3}=0.95$	$120.0=0.6^{\circ}$
$\left.\left.\mathrm{C}(13)-\mathrm{Ci} 16^{11}\right)-\mathrm{Ci} \mathrm{i}^{-11}\right)$	$120.7=0.9^{\prime}$	$120.0=0.6$
$\mathrm{C}(1)-\mathrm{C}(\mathrm{S})-\mathrm{C}(9)$	117.0	116.7 $=0.7{ }^{3}$
$\mathrm{C}(15)-\mathrm{C}(15)-\mathrm{C}(19)$	$116.4 \div 0.9{ }^{\circ}$	116., $=0.7$
$C(6)-C(6)-C(5)$	$117.9 \pm 1.0^{\circ}$	117.9 $=0.7^{*}$
$\mathrm{C}(17 \mathrm{~T})-\mathrm{C}(16)-\mathrm{C}(15)$	117.9 $=0.9{ }^{2}$	$11.9=0.9$
C(9)-C(3)-C(6)	120.5 ± 0.9^{2}	
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}\left(16^{11}\right)$	$121.9 \pm 1.0^{\circ}$	
$\mathrm{C}(3)-\mathrm{C}\left(6^{1}\right)-\mathrm{C}\left(5^{\text {I }}\right)$	$122.5 \div 1.0^{\circ}$	122.1 $=0.7=$
$\mathrm{C}\left(1 \mathrm{Sj}-\mathrm{C}(16 \mathrm{II})-\mathrm{C}\left(15^{\mathrm{II}}\right)\right.$	12: $3.3=1.0{ }^{\text {\% }}$	12-.1 $=0.7$
$\mathrm{C}\left(6{ }_{j}-\mathrm{C}(7)-\mathrm{O}(\mathrm{ro})\right.$	$120.7 \div 0.9{ }^{\circ}$	- $-0.6{ }^{\circ}$
C(16)-(C17)-G(zo)	${ }_{120.7}=0.9$. $4=0.6$
$O(\mathrm{roj}-\mathrm{C}(\tau)-\mathrm{Cis})$	121. $=1.0$	121.9 $\div 0.7{ }^{*}$
$\mathrm{O}(10)-\mathrm{C}(17)-\mathrm{C}(13)$	$122.3 \div 0.9^{\prime}$	

r.5-Cyclooctadiene

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$123.3=1+$	$129.3=1.0^{*}$
Cixij-Citaj-Cir3)	129.7 $=1+$	$129.3=1.0$
$\mathrm{C}(2)-\mathrm{Cl} 3$ - Cl	12n-3 $=1 \times 10$	121.1 $=1.0^{3}$
C(12)-C(I3)-C(14)	119+1-4	$121.1=1.0$
	: $\times 1+2 \times 1.3=$	
$\left.\mathrm{C}\left(14^{11}\right)-\mathrm{Cis}\right)-\mathrm{C}(\mathrm{I} 2)$	151.7 $=1.3{ }^{\text {a }}$	$113.0=1.0$
Ci3i-Cfficial	$110.5=2.0$	$110.2=1.1^{3}$
	115.9 - $1.5{ }^{\text {a }}$	$110.2=1.1$

Culcotadiene-nicke!

	$\begin{aligned} & 93-7 \\ & 93 \cdot 5= \end{aligned}$	93.45
D:crequasuote-ixicical		
	$-3.1=$	-2.2

[^3]coordination polyhedron of approximately cubic environment has no precedent in that known eight-coordination configurations invariably are based upon less regular poithedra (aiz, the dodecahedral and antipismatic arrangements) ${ }^{13}$. Hence, both the stereochemistry and electronic contiguration of the presumed "zerovalent" nickel' in these complexes strongly support a four-coordinated tetrahedral type sigma-orbital bonding representation for the nickel.

Fig. 2. The packing of r.5-cyciooctadiene-duroquinone-nickel as viewed down the ored direction.

These results strongly suggest a similar geometry of the diolefinic bonds with an essentially tetrahedrally coordinated nickel in bicycloheptadiene-duroquinonenickel, dictclopentadiene-duroquinone-nickel, crclooctatriene-duroquinone-nickel, and cyclooctatetraene-duroquinone-nickel. All of the above compounds, each of which has only one duroquinone group per molecule, have electronic spectra similar to that of cyclooctadiene-duroquinone-nickel ${ }^{\sharp}$. It should be noted that no direct predictions of the configurations in cyclooctadiene-duroquinone-nickel or the other mono-substituted duroquinone-nickel complexes were made by Schrauzer and Thyret ${ }^{4}$.

The distance from the nickel to the olefinic carbon atoms in the cyclooctadiene ring is $2.10 \pm 0.01 ~ A\left(a v^{-}\right)$and to the double bond center is r. $99 \mathcal{A}$. The corresponding nickel-duroquinone distances are $2.24 \pm 0.007 \AA$ (av.) and 2.II A. Both sets of distances are considerably longer than the nickel-carbon distances of $1.98 \pm 0.01 \AA$ and the nickel-midpoint distance of $x .83$ \& reported for a nickel-unconjugated olefinic bond in $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NiC}_{5} \mathrm{H}_{5} \mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)_{2}{ }^{14}$. The angle formed by the two olefinic midpoints of the duroquinone with the nickel as the vertex is 72°, whereas the corresponding angle to the crclooctadiene is 04^{c}.

Since no abnormally short intermolecular distances are present, the molecular crystals are held together primarily by van der Waals forces; the minimum intermolecular $\mathrm{H}_{3} \mathrm{C} \ldots \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{C} \ldots \mathrm{O}$ contact distances of 3.3 A are approximately equal to the normal van der Waals distances ${ }^{15}$.

Geometry of the duroquinone

The duroquinone fragment of crystallographic $C_{s r}$ symmetry possesses idealize $C_{2 \varepsilon}$ symmetry as contrasted with the idealized $D_{ \pm h}$ symmetries of free planar duro quinone and quinone, as found from X-ray studies by Hirshfeld et al. ${ }^{16}$ and Trotter ${ }^{15}$ respectively: The lower symmetry in the nickel complex is a result of the two carbony groups bending back away from the nickel and the four methyl carbons bending slight. ly toward the nickel. The resultant dihedral angle between the plane of the foui central rirg carbons and the plane of the carbonyl group and the two carbons to which the carbonyl is attached is 6°. The bending back of a carbonyl group in a ring upon complexing of the ring with a metal has been observed for several cyclopentadienone complexes in which a diene group is coordinated to the metal. These include cyclo-pentadienyl-tetramethylcyclopentadienone-cobait ($\left.S^{*}\right)^{15}$, z-cyclopentadienyl-tetrakis-(triffuoromethyl)cyclopentadienone-cobalt $\left\langle 2 \pi^{7}\right)^{19}$, and tetrahis(trifluoromethyl)-cyclopentadienone-tricarbonyliron ($\left.16.2^{\circ}\right)^{19}$. The deformation of the carbonyl groups in these compounds may be at least partly attributed to the distortions of the σ framework of the olefinic carbons coordinated to the metal; this interaction produces an unsymmetrical charge distribution thereby partially destroying the geometrical restrictions which the olefinic bond places upon attached substituents. This explanation has been utilized to account for the considerable deformation of the tetrasubstituted unconjugated olefinic group bonded to nichel in $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{SiC}_{5} \mathrm{H}_{5} \mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)_{2}{ }^{14}$.

Of significance is that although the duroquinone group also functions as a fourelectron donor system to the metal, the resulting interaction does not directly incolez a diene ssetem; the average non-bonding intramolecular C(6) ...C(S) distance of 2.45 $\therefore 0.012$ A for the two half-molecules certainly implies little if any direct interaction between the two pairs of olefinic groups except for that which can occur indirectlyvia both the CO and metal linkages.

Schrauzer=0 has suggested that these dexiations in the metal-complexed duroquinone may arise írom increased stability of the complex due to a decrease in antibonding metal-carbonyl overiap in the z-back-bonding MO combinations. The bending ($S=1$ of the one carbonyl group out of the mean diene plane in the tetramethyl-substituted cyclopentadienone ring in cyclopentadienyl-tetramethylyclopentadienonecobalt is not appreciably larger than the symmetry-identical distortions ($6^{\prime \prime}$) of the two carbonvl groups out of the mean plane of the other four olefinic ring carbons in the tetramethyl-subsituted quinone complex.

The earbongl groups in these five- and six-membered ring systems function as electron-withdrawing "sinks" by decreasing the overail charge donated to the metal (both directly through decreasing via conjugation in the metal-complexed state the charge contributed to the metal from the μ-bonding olefinic carbons and indirectly through greater back-donation of ez-electron charge from the metal to the ring orbitals). Because of the directional nature of the metal orbitals and the "para" orientation of the two $C O$ groups in the duroquinone ligand, it may be expected that cacin CO group in duroquinone accepts a smaller portion of charge from a given metal than the one CO group in tetramethylesclopentadienone thereby causing smaller decreases in the carbon-oxygen bond order and in the carbonyl stretching frequency for the metal-complexed duroquinone.

Examination of the carbonyl stretching frequencies of these compounds reveals a decrease of $133 \mathrm{~cm}^{-2}$ in cyclooctadiene-duroquinone-nickel $\left(5553 \mathrm{~cm}^{-1}\right)^{3}$ from that

J- Organometal. CEem-. 3 (1965) 200-201
in free duroquinone ($1687 \mathrm{~cm}^{-1}$) ${ }^{3}$:s. a decrease of $146 \mathrm{~cm}^{-1}$ in the tetramethyl- and tetraphenylcyclopentadienone-cyclopentadienyl-cobalt compounds (both at 1569 $\left.\mathrm{cm}^{-1}\right)^{21}, 22$ from that in free tetraphenylcyclopentadienone $\left(1715 \mathrm{~cm}^{-1}\right)^{21,22}$. The validity of such a comparison is limited in this case due to the presence of different metals and different ligands (i.e., crelooctadiene and cyclopentadienyl groups), both of which certainly may influence the carbonyl frequencies by different mixing of the group's bonding and antibonding \boldsymbol{x}-orbitals. It should be noted that the CO frequencies reported by Schrauzer and Thyret ${ }^{3}$ for the other mono-duroquinone nickel complexes are essentially invariant ($\sim 1550 \mathrm{~cm}^{-1}$) to the diolefinic group present, but as expected bis(duroquinone)nickel has a higher CO frequency of $1575 \mathrm{~cm}^{-1}$. In any event our structural results, which do not conflict with the proposal made by Schrauzer=0, suggest an approximately similar charge distribution on the tetramethyl-substituted crolopentadienone and quinone ring systems consistent with the essentially equivalent distortions observed for these rings.

The importance of the nature of the substituents on the ring is demonstrated bythe much greater deformations of the carbonyl groups in the two perfluoromethyl cyclopentadienone metal complexes mentioned earlier ${ }^{19}$, which may result from increased localized bonding of the diene system to the metal due to a greater inductive or other electrical effect of the perfluoromethyl groups and/or greater steric repulsion of these bulkier groups.

The idealized $C_{2 r}$ symmetry of the duroquinone fragment is demonstrated by an examination of the 9 pairs of crystallographically independent distances and angles which must be equivalent in each half-molecule for this assumed synnmetry. Eight of the nine pairs have differences within $2 \sigma^{\prime}$'s wh only one pair of non-bonding cross ring distances (i.e., $C(6) \ldots C\left(\sigma^{\prime}\right)$ a's. $C(S) \ldots C\left(S^{\prime}\right)$) differing by $2.5 \sigma^{\prime}:$, which is still not a significant difference. The average values of these nine pairs of bond lengths and angles together with the standard deviation of the average are listed in Table 5 along with the other singly-determined ring parameters. A comparison of these molecular parameters with those of free duroquinone and quinone (also presented in Table 5) shows that the only really significant change in the quinone ring parameters upon interaction with the nickel, aside from the decrease of idicalized stmmetry from $D_{2 h}$ to $C_{2 r}$ due to the carbonyl distortion, is a lengthening of the $\mathrm{C}=\mathrm{C}$ bond. The average double bond ralues of $1.33 \dot{A}$ in the free duroquinone ${ }^{1 \epsilon}$ and $1.322 \doteq 0.00 S A$ in the free quinone ${ }^{17}$ have increased to $1.4^{\circ}=0.0$. A in the nickel-complexed duroquinone. The lengthening of a conjugated olefinic bond to $x+f^{-1}+f^{6}$ A upon coordination with a metal has been observed in a number of other complexes and is attibuted to a decrease in the π-bond order of the oletinic bond due to the interaction with the metal.

The average C-C single bond distance of $1.45 \doteq 0.007 \mathcal{A}$ in the nickel complex i.s somewhat shorter than those found in free duroquinone ${ }^{16}$ (1.49 A) and quinone ${ }^{1 \mathrm{I}}$ (I-477 $=0.006 \mathrm{f}$). The $\mathrm{C}-\mathrm{CH}_{3}$ distance of $\mathrm{I} .5^{2} \doteq 0.007 \AA$ is virtually unchanged from that of $1 . j 1$ if found in free duroquinone ${ }^{26}$. The average values of $1 I_{7}=0.6^{\circ}$ for the ring angle whose vertex is at the ketonic carbon and $121 \doteq 0.4^{\circ}$ for the other inner carbon ring angle are experimentally equal to those in the two free quinones ${ }^{16,15}$.

The carbonsl bond length of $1.2+ \pm 0.009 A$ is in essence unaltered from those observed for free duroquinone ${ }^{16}$ ($\mathrm{I} .23 A$) and quinone ${ }^{17}$ ($1.222 \neq 0.00 S A$). A lengthening would be predicted on the basis of the previously mentioned decrease in infra-

TABLE 5
a. Conparison of geinone distances* and of guinone angles

	r.5-cyctooctadiere-duroquinone-nickel	duroquinome ${ }^{16}$	quinone ${ }^{\text {a }}$	
Distarices				
$C=C$	1-401 ± 0.010	1.33	$1.322 \pm 0.00 \mathrm{~S}$	
C-C	1.454 $=0.003$	1.49	$1.477 \doteq 0.006$	
$\mathrm{C}-\mathrm{CH}_{3}$	1.522 ± 0.008	1.51		
$\mathrm{C}=\mathrm{O}$	1.237 $\ddagger 0.009$	1.23	$1.222=0.008$	
$\mathrm{H}_{3} \mathrm{C} \ldots . \mathrm{CH}_{3}$	2.999 -0.014	2.98		
$\mathrm{H}_{3} \mathrm{C} \ldots \mathrm{O}$	2.509 ± 0.009	2.52		
M.... ${ }^{\text {M }}$	$2-43$	2.58	$2-53$	
-tugles				
$\mathrm{C}=\mathrm{C}-\mathrm{C}$	$121.0 \div 0.4=$	$121{ }^{2}$	$1 \geq 1 . x \doteq 0.5_{5}^{0}$	
$\mathrm{C}-\mathrm{C}-\mathrm{C}$	$117.5 \div 0.6^{\circ}$	120"	$117.5=0.6^{\circ}$	
$\mathrm{C}=\mathrm{C}-\mathrm{CH}_{3}$	$12 \mathrm{I} . \mathrm{S} \doteq 0 . \mathrm{J}^{3}$	123^{3}		
$\mathrm{C}-\mathrm{C}-\mathrm{CH}_{3}$	$117.3 \div 0.5=$	117		
$\mathrm{C}-\mathrm{C}=\mathrm{O}$	$121.3 \doteq 0.50$	$121{ }^{3}$	$121.1 \div 0.4{ }^{2}$	

[^4]
Geomtiry of the x, j-cyclooctadieme

Oif significance is the absence of any appreciable distortion of the structure of the I .5 -cyclooctadiene fragment from that of the free 1.5 -cyclooctadiene. A comparison of molecular parameters obtained for the ring in this complex with those obtained for gaseous 1.5 -cyciooctadiene in an electron difiraction study by Hedberg and Hedberg ${ }^{33}$ is given in Table 6. Also given in this table are the corresponding parameters for the $\mathrm{I}, 5$-crelooctadiene rings in the metal compleses $\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{CuCl}_{2}$ and $\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{RhCl}_{2}$ as determined from X-ray studies by van den Hende and Bairdt and by Ibers and Snyder*s, respectively. For clarity the following discussion will refer to the ring atoms by standard ICC nomenciature as designated in Table 6.

A distinctive structural feature common to all of these compounds 23,24 (except for $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{RhCl}_{-2}{ }^{-3}$ where the magnitude of the errors does not permit such conclusions) is the skewing of the ring and the resultant idealieed symmetry (and in the nickel complex, crystallographic symmetry) of C_{2}. This shewing, illustrated for the cyclooctadiene ring in the nickel complex in Fig. 3, may be visuaiized as a distortion from a rectangle composed of $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{7}$, and C_{8} in which C_{3} and C_{7} move away from each other and toward the nickel. The resulting dihedral angle between the plane containing C_{3}, C_{3}, and C_{5} and the plane containing C_{7}, C_{4}, and C_{5} is about $I_{7}{ }^{3}$. As a consequence of this distortion, the ron-bonding distance between the non-olefinic carbons $C_{3} \ldots C_{7}$ of $3.70 \equiv 0.026 A$ is almost $0.6 A$ greater than the non-bonding distance between the non-oleñic carbons $C_{4} \ldots C_{3}$ of 3 -1I $\pm 0.029 \mathrm{~A}$. In the free $1,5-$ cyclooctadiene ring ${ }^{3}$, the corresponding cross-ring distances of 3 -13r and $3 . \mathrm{Sin}_{5} A$ are representative of a similar skewing. Comparison of the non-bonding cross-ring distances between the olefinic bonds in both the nickel complex (Fig. 3) and in the free

TABLE 6
a comparison of 1,5-cyclooctadiene distances (ì) and angles*

- For clarity, the atorns in this table are numbered according to IUC notation. These subscripted chemical ciesignations are related to the crystallographic notation as follows:

cyclooctadiene ${ }^{23}$ (i.e., $3.19 \doteq 0.023 A$ is. $3.21 \pm 0.023 A$ in the complex; $3.302 A$ is. 3.3 IS A in the free organic molecule) shows essentially no skewing in the unsaturated hydrocarbon part of the cyclooctadiene ring in both complexed and uncomplexed forms. The consistency between the cross-ring distances in the nickel complex and those in the free cyclooctadiene leaves little doubt that tine skewing is the same in both compounds, and that this distortion is predominant for the non-olefinic carbons.

No observed lengthening of the olefinic bond occurs in the nickel complex. This bond length is $\mathrm{I} .33 \doteq 0.01 A$ in the complex and r.34I A in the free cyclooctadiene 3. The 99.9% fiducial limits for the mean value in the metal complex are 1.28 and $\mathrm{r} .37 \AA$, so there is less than a 0.1% chance that the true value of this bond length can be greater than 1 .37 A. Most prior X-raỹ results of unconjugated olefins bonded to metals
show a complexed olefinic bond length greater than I fo \AA (e.g., $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NiC}_{5} \mathrm{H}_{5} \mathrm{C}_{2}-$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)_{2}^{14}, \mathrm{I}-45 \pm 0.02 \mathrm{~A} ; \mathrm{C}_{3} \mathrm{H}_{12} \mathrm{CuCl}_{2}{ }^{24}$, r. $40 \doteq$ o.or A). However, these large magnitudes of lengthening over that of a normal double bond length of r. 33 A have

(a)

(b)

(C)

Fig. 3. Three projections of the $1 . j$-cyclooctadiene fragment illustrating the skewing of the ring. The atoms are designated accoriling to IUC designation.
been questioned in light of the relatively small decreases in $\mathrm{C}=\mathrm{C}$ stretching frequencies upon complexing ${ }^{* 0}$. Indeed, a recent low temperature \mathcal{N}-rav redetermination with counter date of norbornadiene palladium(II) chloride by- Baenziger at al. - , has revealed that the unconjugated, metal-complexed $C=C$ bond length (formerly reported ${ }^{* 6}$ as 1.46 A) is $1.37 \doteq 0.01 \mathrm{~A}$.

The two approximately equal single bonds adjacent to the olefinic bond (r.jro $\pm 0.015 A, 1.52 S \doteq 0.016 A$ have an average value of $1.52 A$, which is ciose to those of $5.502 \mathcal{A}$ (av.) in free creclooctadiene ${ }^{23}$, and $\mathrm{r} .50 \mathcal{A}$ (av., individual e.s.d., o.or \mathcal{A}) in 1,5 -cyclooctadiene-copper chloride ${ }^{* 3}$. The value of $r .5 \% 0=0.016$ if for the single bond non-adjacent to the double bond agrees with those of $\mathrm{r} .55+\mathcal{A}$, and $\mathrm{I}-5 \mathrm{~S} \mathcal{A}$ (av., indiviaual es.d. o.or (\mathcal{A}) in the free molecule ${ }^{23}$ and the copper complex ${ }^{24}$, respectively. The average value of $1.52 \doteq 0.09$ A for all these single bonds reported for the rhodium complex=3 lies experimentally within the range defined by these other csclooctadiene compounds.

The $\mathrm{HC}=\mathrm{CH}-\mathrm{CH}_{2}$ angles adjacent to the double bond in the nickel complex of $129.3 \doteq 1.0^{*}$ and $121.1 \therefore 1.0^{2}$ are considerably larger than the ox̀ler, non-adjacent, $\mathrm{HC}_{-} \mathrm{CH}_{2}-\mathrm{CH}_{2}$ ring angles of $113.0=1.0^{*}$ and $116.2 \doteq \mathrm{~F} . \mathrm{I}^{*}$, as would be expected in a comparison of angles whose vertices are quasi-sp p^{2} carbons with angles whose vertices are quasi-s p^{3} carbons. It can be seen that the skewing in the non-olefinic part of the ring is manifested in the different angles adjacent to the olefinic bond.

Examination of the angles given in Table 6 shows the average values of the adjacent $\mathrm{HC}=\mathrm{CH}-\mathrm{CH}_{2}$ and non-adjacent $\mathrm{HC}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ angles in free cyclooctidiene ${ }^{23}$ and the rhodium ${ }^{95}$ and copper ${ }^{24}$ complexes to be in good agreement with those of the nickel complex. The only reasonably large difference occurs in the adjacent angles in ${ }^{-} \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{CuCl}_{2}$ which have an average value ${ }^{34}$ of $11 \mathrm{~S}^{\circ}$.

In the nickel complex, C_{3}, C_{2}, C_{2}, and C_{3} are coplanar within o.or A, whereas in the free cyclooctadiene ${ }^{33}$ the carbons are distorted such that the plane of $\mathrm{C}_{8}, \mathrm{C}_{1}$, and C_{2} makes a dihedral angle of 10° with the plane of C_{1}, C_{2}, and C_{3}. This above
mean plane of the four carbons (i.e., $\mathrm{C}_{8}, \mathrm{C}_{2}, \mathrm{C}_{2}, \mathrm{C}_{3}$) in cyclooctadiene-duroquinonenickel forms a dihedral angle of 124° with the mean plane of the four olefinic carbons $\left(C_{1}, C_{2}, C_{5}, C_{6}\right)$ and of 68° with its symmetry related plane of C_{4}, C_{5}, C_{6}, and C_{7}.

In the nickel complex the two nickel-cyclooctadiene olefinic midpoint distances are required by the crystallographic two-fold to be identical (r .99 A). These distances were also found to be equivalent ($2.00 \div 0.04 \AA$) in the rhodium complex ${ }^{25}$; however, in the copper complex ${ }^{24}$ an inexplicable difference in the two metal-midpoint distances (2.05 and 2.22 f) occurs.

Metal-ring bonding

The significantly short olefinic bonds in the cyclooctadiene ring relative to those in the duroquinone ring (i.e., 4.6 standard deviations difference) may imply weaker bonding from the nickel to the cyclooctadiene than to the duroquinone. Chemical evidence of this is provided by the fact that both the bis-duroquinone-nickel and the crelooctadiene-duroquinone-nichel are very stable and are synthesized by the reaction of $\mathrm{Mi}(\mathrm{CO})_{4}$ with the appropriate free ligands ${ }^{1-3}$, whereas bis-cyclooctadiene-nickel is unstable and can be prepared only indirectly from the compound cyclododeca-$1,5,9$-triene-nickel $(0)^{\text {sis }}$. This difference in nickel-ligand bond strength would presumably be due to the stabilization of the duroquinone-nickel bonds through extensive τ-electron back-bonding.

In presumed conflict with this is that the nickel is o.I2 \AA closer to the olefmic bonds in the crelooctadiene ring than to those in the duroquinone ring. Although the metal-ring distance has been utilized as a gauge of bond strength ${ }^{29}$, this criterion alone would imply stronger nickel-cyclooctadiene bonding than nickel-duroquinone bonding. If it is assumed for conceptual convenience that each metal-ring interaction result: primarily from overlap of two tetrahedrally hybridized metal lobes with the corresponding x-bonding molecular orbitals of each double bond, then this apparent conflict may perhaps be rationalized. The normals to the π-nodal planes of the two double bonds in duroquinone are essentially parallel to each other and to the vector through the nickel and the centroids of each of the two rings, whereas the normals of the two. x-nodal planes of the double bonds in crolooctadiene are directed more nearly toward the nickel and form an angle with the above nickel centroid vector (or with the intersecting vector parallel to it) of 56°. In the case of the nickel-duroquinone overlap, the two tetrahedral nickel orbitals, which are oriented toward the midpoints of the two double bonds, intersect the $\boldsymbol{\tau}$-orbitals at an angle of approximately 125° and at a distance of about o.S \& from the double bonds. In order for the tetrahedral nickel orbitals to obtain significant overlap with the non-parallel cyclooctadiene π-olerinic orbitals (which make an angle of approximately $11 \Omega^{*}$ with each other), the nickel must lie closer to the cryclooctadiene ring. Hence, this effect, as well as the difference in separations between the olefinic bonds in the two rings (i.e., $2 . S_{\&} \&$ for duroquinone is. $3.20 \hat{A}$ for cyclooctadiene), suggests that the difference in metalolefin distances may be a consequence of the stereochemical confguration of the ligands rather than a simple function of the metal-olefin bond strengths.

ACKNOWLEDGEMESTS

We wish to thank both the Cnited States Atomic Energy Commission and the National Science Foundation for their generous financial support of this work. The
J. Organometal. Chem., 3 (1965) 200-221
calculations were carried out on the IBM 704 computer at MURA and on the CDC $16 \mathrm{c}_{4}$ computer at the University of Wisconsin Computing Center. We are greatly indebted to Dr. G. Schrauzer for samples of this compound and for his interest in this work. Our thanks are extended to Professor K. Hedberg of Oregon State Liniversity and Professor G. M. J. Schmidt of the Weizmann Institute of Science (Rehovoth, Israel) for communicating part of their results to us prior to publication.

SEMDARY

The structure of $\mathrm{I}, 5$-cyclooctadiene-duroquinone-nickel, $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NiC}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$, has been determined from a three-dimensional X-ray analysis. The compound crystallizes in a monoclinic unit cell of symmetry $P 2 / \pi$ and dimensions $a=14.26 A, b=7.95 \AA$, $c=1+17 A$, and $\dot{\beta}=94^{\circ} 27^{\prime}$. There are four molecules per unit cell with each molecule located on a crystallographic two-fold axis. A three-dimensional least-squares refinement yielded a final unweighted discrepancy factor of $R_{1}=10.10$. Each discrete monomeric molecule consists of a nickel atom sandwiched between a boatform 1,5 -cyclooctadiene ring and a duroquinone ring. The two sets of parallel double bonds in the crolooctadiene and duroquinone rings are perpendicular; the nickel therefore can be considered to possess an idealized tetrahedral configuration. The creloostadiene ring of C_{2} symmetry shows significant skeletal skewing similar to that present in free 1,5 -cyclooctadiene, whereas the idialized $D_{i n}$ symmetry- of free duroquinone is reduced to $C_{2 r}$ in the nickel-complexed duroquinone due to a deformation of the carbontly groups out of the plane of the ring. The detailed geometry of the rings, and the nature and implications of the bonding are discussed with respect to related complexes.

REFERENCES

[^5]$\because 2$ E. Weiss and W. Hëbel, J. Inorg, Nucl. Chent., if (1959) 42.
23 L. Hedberg and K. Hedberg, Aöstracts of Papers, National Meeting of the -1 mericar: Crustallographic Association, Bozeman, Montana, July 1964.
24 J. H. van dea Hende and W. C. Baird. Jr., J. A in. Chem. Soc., Sj (ig63) 1009.
25 J. A. Ibers and R. G. SNyDER, Acta Cryst., 15 (1962) 923.
20 N. C. Baenziger. J. R. Doyle, G. F. Richards and C. L. Carpenter, in S. Mirschner, Adiances in tine Chemistry of the Coordination Compounds, Macmillan. New York, 1961, pp. $13^{1-13} \mathrm{~S}$.
$=$ = C. Baenziger. G. F. Richards. R. C. Medrid, H. L. Haight and J- R. Doyle, fibstracts of Papers, National Meeting of the American Crystallographic Association, Bozeman, Montana, July 1964.
25 G. Wicke, 4 ngew: Chent., 72 (1960) 581.
29 Cf., M. R. Cherchile and R. Mason, Proc. Chem. Soc., (1963) 112.

[^0]: c Presented in part at the x ifth Nationai Meting of the American Chemical Society, Phízdeiphia, Pa., -tpril. rgof.

 OBasex in part on a dissertation submitted by 3I. D. Glick to the Graduate School of the Eniversity of Wisconsin in partial iulifltment of the requirements for the degree of Doctor of Philosophy.

 E Fellow of the silired P. Sloan Founciation.

[^1]: "These stamderd de iations are required to beichentically zero by the special two-fold positions of the nickel atoms.
 $\left.\because-B_{32}-2 h H_{12} \div 2 i n B_{13} \div 2 N B B_{3}\right)$) were used: the resulting thermal coefficients (with standard deviations in yarentheses! are:

 | | Io ${ }^{2} H_{12}$ | $1 \mathrm{O}^{+1} \mathrm{H}_{\text {a }}$ | ${ }_{10} 0^{4} H_{33}$ | $10^{1} B_{13}$ |
 | :---: | :---: | :---: | :---: | :---: |
 | Xin! | 3015 | $3{ }^{39} 3$) | 26 (1) | 4(I) |
 | Nif(| --í) | 33(3) | 30(1) | 4(1) |

 Since the nicke atons lice on two-fold axes. B_{12} and B_{23} are required by the erystallugraphic symmery io be identically zero ${ }^{10}$.

[^2]: f. Organometal. Cnem., 3 (190́5) 200-221

[^3]: - If and N^{-}denote the midpoints of the oletinic duroquinone and 1.5 cyclooctadiene bonds, respectivels, as detined in Table 3. The superseripts refer to symmetry-related positions as denned in Tabic 3-

[^4]: - M denotes the olefinic midpoints. In the nickel complex the ring is presumed to have C_{9} symmetro, while the later two rings are presumed to have $D=n$ symetry-
 red stretching frequency: A similar carbonyl bond length of r. $23 \doteq 0.01$ A was found in cy-clopentadientl-tetramethylewiopentadienone-cobalt ${ }^{15}$.

[^5]:
 2 G. N. Schratzer and H. Thyret, Z. Naterforsch., i6b (ig6i) 353 -
 3 G. N. Schratzer nid H. Thyret, Z. Vaferjopich.. t-b (ig6z) 73.

 Wisconsin, 1062.
 i W. R. Besing, K. O. Martin and H. A. Levy, f Fortran Cristallographic Least Sq:iares Program, ORNL-TM-305. Oak Ridge National Laboratory, is63.
 3 IV. K. Busing, K. O. Martin and H. A. Levy. f Fortran Finctionand Eiror Program, OrNL-TM-305. Oak Nidige National Laboratory, r963.
 9 J. Blocist, f Fourier Progran: for tic CDC r6of. University of Visconsin, 1963.
 ro H. A. Levy, ficta Crist. 9 \{5956) 6:9.
 in D. L. Smithe, f Least-Squares Plaves Program for the CDC roof Computer. Ph.D. Thesis (Apperdix iV). Eniversity of Wisconsin, 1962-
 12 J. Ladell, B. Post and I. Fankechen, -icta Crest., 5 (1952) 795: L. O. Brockwiy and P. C. Cross, J. Chem. Pinys., 3 (1935) S2S.
 13 Cf.. J. L. Hoamd and J. V' Silverton, Inorg. Chemi. $=(1963)=35$.

 15 L. Pacing, The Nutare of the Chennica! Bond, 3rd ed., Cornell Lniversity Press. Ithaca. New York, 1960, pp. 257-26x.
 16 F. L. Hirseffeld, D. Rabinovich. G. MI. J. Schimidtand E. Cbell. ficta Crisf., i6 (1963) A57.
 17 J. Trotter. ficta Crest., 13 (1960) 36.
 13 L. F. Dheil and D. L. Smith, f - Am, Chem. Soc., S3 (196i) $75=$.
 19 N. A. Bailey, M. Gerloch and R. Mason, Nature, 2or (1964) 72.

 21 R. Markby. H. W. Steriberg and I. Wender, Chem. Ind. (Lonãon), (I959) I3Si.

